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HE complexity of many scenarios envisioned for future
autonomous systems, ranging from planetary exploration to
rescue missions, requires a broad range of capabilities for individual
units (often including air, ground or sea mobility and sophisticated
multimodal sensor suites and actuation devices), which cannot be
implemented with a single platform class. Rather, it may be
necessary to coordinate several specialized units to attain complex
objectives in a reliable, timely, and efficient way [1]. While con-
siderable progress has been made on cooperative control of networks
of homogeneous vehicles (see, e.g., [2-3]), heterogeneous networks
are still relatively poorly understood. In such a direction, recent
efforts (see, e.g., [6,7]) have been undertaken for spreading the
adoption of unmanned systems in real-world operational scenarios.
In particular, see [8], where the employment of cooperating mobile
robots, often denoted as multiple mobile robot systems, is a clear
example of the capabilities achievable by combining the char-
acteristics of heterogeneous vehicles with complementary features.
To optimally exploit the different capabilities of each individual unit
in obtaining the desired final behavior the team is required to be
suitably coordinated via advanced planning and control algorithms.
This Note concentrates on systems of heterogeneous vehicles,
arising from the combination of 1) a slow autonomous carrier vehicle
(typically a ship) with a long operating endurance and 2) a faster
vehicle (typically an aircraft) with a limited operative endurance. The
carrier is able to transport the faster vehicle, as well as to deploy,
recover, and service it. Even though this two-vehicle system is very
simple it has relevant applications, and many path planning and
coordination problems of interest, similar to those introduced in [9—
11] for other systems may be defined for it. In the preliminary work
[12] the determination of the optimal trajectories connecting up to
two given points has been detailed. This Note extends previous
results to the case in which n points have to be visited and the visiting
sequence is not given a priori.
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II. Carrier-Vehicle System

The system we are going to deal with is composed of two different
vehicles (see Fig. 1): a carrier, whose variables and functions will be
denoted by the subscript ¢, and a vehicle, denoted by the subscript v.
In the following we will refer to the combined system as the carrier—
vehicle system. The vehicles will be considered as material points
belonging to the Euclidean space R? and their position will be
denoted, respectively, as p.(t) =[x.(0)y. ()] and p,(t)=
[x,(5)y,(0)]F. Tt is assumed that the carrier has a single integrator
behavior, and thus it is able to follow any continuous path with a
speed that is limited to be lower than or equal to a certain maximal
velocity V. > 0, i.e., |p. (D] := vx.()*> + y.(1)* € [0, V,] for all
t > 0. Regarding the carried vehicle, we need to distinguish between
two different situations:

1) When it is not carried, it can follow any continuous path with a
speed lower than or equal to V, >V, i.e.,

2. = VE,()* + 3,()* €[0.V,]

2) When it is carried, its position coincides with that of the carrier,
viz., p,(t) = p.(1).

To model the limited operating range of the faster vehicle, it is
assumed that it can leave the carrier position, i.e., p, # p., for no
more time than a units of time. Moreover, anytime the vehicle comes
back to the carrier, i.e., p, = p.,its remaining operating endurance is
instantaneously restored to a.

III. Ordered Visit of n Points

Among the large variety of planning problems that can be
formulated considering the above presented carrier—vehicle system,
this Note will focus on a special scenario that was inspired, in
particular, by rescue operations (see, for instance, [7]), where the
faster vehicle is required to land back to the carrier after having
visited each target point (e.g., to transport victims on the main vehicle
as soon as possible). Within this framework the first mission planning
problems we can define is the following:

Problem I.Letan initial point p,, a desired terminal point p, and a
list of n points g, = [q,, - - - » g,] be given with p .(0) = p,(0) = p,.
Determine the minimum-time trajectory allowing each point to be
visited by the carried vehicle in an ordered way by respecting, for
each point ¢g;, a given sequence of takeoff, visiting the new point-
landing prescriptions and ending, for both vehicles, at the terminal
point py.

By exploiting the fact that, in the absence of constraints, the
optimal trajectory between two points is a straight line covered at the
maximal speeds for both the carrier and the carried vehicle, the above
problem may be formulated as the following optimization problem:
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where the unknowns to be determined are the collection of points
Proi» Dii € R%, i€ {l,...,n}, representing the takeoff and the
landing points that allow the vehicle to optimally visit the ith target,

and the time intervals ¢ eER, ¢ ie{l,...,n}

Pli-Pro.i+1 Proi-Pli?


http://dx.doi.org/10.2514/1.50539

J. GUIDANCE, VOL. 34, NO. 4:

P1

N

Vehiclel f x\\

Amm—-

~
,'O—» e

p : Ve
03 > arcsin (Vv)

Fig. 2 Geometric interpretation behind the upper bound ¢, (¢, n, 0;,).

representing, respectively, the time that the carrier will employ to
reach the (i 4+ 1)th takeoff point from the ith landing point and the
time that the vehicle will spend between the takeoff and the
subsequent landing instants needed to visit the ith point.

For simplicity, p,;o = po and p,, ,+1 = p; will be assumed. Note
that since the objective function is linear and the constraints are
convex, Eq. (1) is a convex optimization problem and then the
optimum may be efficiently computed through numerical solvers.

Although an exact analytic solution is unknown (beside a few
special cases like those discussed in [12]), it is possible to analytically
determine upper-bounds and lower bounds to the optimal solution of
Problem 1. Namely, it is possible to prove that a lower bound to the
optimal cost of Problem 1 is always given by

t,(¢,n) =max{({/V,.—nV,a/V, + na),L/V,} )

where £ is the length of the shortest path that a single holonomic
vehicle would undertake to complete the visit of all points of interest,
ie.,

n+l

= Zdifl‘i
i=1

where dy; = |lpo—qill, disii = llgioi —qill, i €42,3,...n},
dn,)H»l = ”qn - pf“

To derive an upper bound, it is enough to analytically find a
feasible, not necessarily optimal, solution to Problem 1. To this end,
denote d;, '= min,_; _,d;_;; and let @’ = min{d,,;,/V,,a}. The
following upper bound

"\ A(B;,a,a)

ty(lon, Oig) =1, (L, n) + Z Vv ®
i=1 ¢
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may be obtained with

(@a—a)v, if 6 < 2arcsin(%) @

A(f,a,a') = {
aV,—a'V./sin(0/2) else

where 0y :=1[60,,6,,...0,], 6; €[0,x], i=1,...,n— 1, denotes
the list of the n (smallest) angles formed by the segments that connect
two consecutive points to be visited (for a graphical intuition, also see
Fig. 2). Please note that if @’ = a and 6; < 2 arcsin(V,/V,) for all
0; € 6, the proposed upper bound precisely matches the lower
bound (2) and it is indeed the optimal cost.

IV. Traveling-Salesman Problem

In this Note we are interested in dealing with the following carrier—
vehicle traveling-salesman problem (CV-TSP):

Problem 2 (CV-TSP). Let p, be the same initial position for both
vehicles, viz., p.(0) = p,(0) = py, and assume an unordered set of n
points ¢e = {q,---,q,} to be visited be given. Determine the
minimum-time trajectory allowing each point to be visited by the
carried vehicle by respecting, for each point g; to be visited, a given
sequence of takeoff, visiting the new point-landing prescriptions and
ending, for both vehicles, to the initial point pj.

As is well known, traveling-salesman problems are typical NP-
hard (nondeterministic polynomial-time hard) optimization prob-
lems. For such a reason, in most practical cases, heuristics have to be
used to solve them. In this Note, in order to deal with the particular
TSP problem at hands, we propose a heuristic algorithm based on the
Euclidean TSP (E-TSP). E-TSP is a particular case of the general
TSP problem in which, given n points in the space, the goal is to
determine the optimal sequence that minimizes the sum of the
Euclidean distances between consecutive points. One of the main
feature of this class of TSP problems is that, although still NP-hard,
they admit polynomial-in-time optimization schemes (see [13]). This
means that for any scalar e > 0, it is possible to find in a polynomial
time a tour whose length is, at most, (1 + 1/e) times larger than the
optimal length. Then, in practice, for any instance of E-TSP we can
obtain an almost-optimal solution in a reasonable time. The CV-TSP
heuristic proposed here consists of the following two steps:

1) Determine the visiting order of the almost-optimal E-TSP tour
for the set of given points {py} U g-

2) Use the above visiting order to solve the resulting visit of n
points (Problem 1) via the convex optimization formulation (1).

The idea behind this approach is that the completion time of the
CV-TSP is related to the sum of the distances between points, and
thus the minimization of E-TSP usually leads to achieve a reasonably
good CV-TSP solution. In particular, it is possible to prove the
following:

Lemma 1. Let the initial point p, and the set of n points g, to be
visited be given. Let {grgp denote the length of the (1 4 1/e)-
approximated optimal E-TSP tour, with e > 0, and let GETSP :=
[6,,0,,...0,], 6, €[0,n] i=1,...,n—1) denote the list of the n
(smallest) angles formed by the segments connecting two
consecutive points in the order given by the approximated E-TSP
solution. Tthen the completion time %Y s, obtained with the
proposed CV-TSP heuristic has a cost that is, at most, & times greater
than the optimal one, with ¢ given by

L
& = ty(lgrsp, 1, GE;ESP)/tL(l —iTil;e’n) )

where 7; (-) and 7y (-) are defined in Egs. (2) and (3).

Proof. By recalling the definition of the lower bound (2), for any
given number of points n the implication £, < £, = t;({,,n) <
t; ({5, n) holds true. Then let £ denote the length of a generic
Hamiltonian cycle for the set of points py U g, and let £3y¢p denote
the length of the optimal E-TSP solution. It follows that £, < .
As a consequence, t;({3rsp,n) < t,(£,n), which implies that
t, (Lghsp, 1) is a lower bound to the optimal solution of CV-TSP.
Moreover, by the property of the (1 + 1/e)-approximated optimal
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Table 1 Comparison between the optimal solution of CV-TSP and the
proposed heuristic

Distance ~ Number Optimal Average Maximum
of cases solution, % degradation, % degradation, %
Large 500 88.2 0.028 1.48
Normal 1000 73.1 0.104 7.5
Short 500 52 0.526 25.1
Table 2 Percentage of cases with degradation
levels lower than 0.1, 1, 2.5, 5, and 10%
Degradation
Distance <0.1% <1% <2.5% <5% <10%
Large 942% 99%  100% 100% 100%
Normal 92.0% 97.9% 99% 99.5% 100%
Short 82.4% 88.6% 932% 97% 99.4%

E-TSP solution, it follows that £phep > Lppsp/(1 + 1/€), where
t; ([€grsp/ (1 + 1/e)], n) is a lower bound to the optimal solution of
CV-TSP as well. The proof ends by noting that ¢, (€grsp, 71, OELSP) is
an upper bound to the proposed heuristic solution. Please note that
for the properties of the upper bound to Problem 1, in the particular
case that the points to be visited are sufficiently far from one another
(ie., dyin/V, > a) and the angles 6, formed by the segments
connecting the points in the order given by the E-TSP algorithm
satisfy 6; < 2 arcsin(V,/V,), then

L
&=t (Lersp, n)/tL (%,n)

results and the optimal sequence of points for E-TSP is also optimal
for CV-TSP.

V. Numerical Results

Numerical simulations have been undertaken to compare the
optimal solution of CV-TSP with the one obtained by the proposed
heuristic in a realistic scenario in which a combined unmanned
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surface vehicle and unmanned aerial vehicle system has to monitor
some randomly generated points of interest in a certain portion of sea.
The unmanned surface vehicle, which represents the carrier, is
assumed to have a maximum velocity V., = 10 mph, and the aircraft
has a maximum flight speed V, = 50 mph and a flight endurance
a=04h.

The targets to be visited are limited to five randomly generated
points that still make the computation of the exact optimal solution in
areasonable time possible. As highlighted in Lemma 1, the distances
among targets play an important role in the performance of the
proposed CV-TSP heuristic. In this respect, the simulations consider
three different scenarios that differ by the size of the area where the
targets are generated. The first one, large distance, consists of an area
of 200 x 200 miles, and the second and the third ones, normal
distance and short distance, measure 80 x 40 miles and 40x
40 miles, respectively. The results are reported in Table 1, where the
number of samples considered and the optimal solution as the
percentage of cases in which the sequences generated by exactly
solving the CV-TSP problem and by using the E-TSP heuristic
coincide. Finally, the average and the maximal degradations in the
cost of E-TSP with respect to the optimal cost of CV-TSP are shown.
Note that the performance of the proposed heuristic is, at least in this
case, a very tight approximation of the optimal solution. It is possible
also to note that, as expected, for points generated in a larger area the
heuristic and the optimal CV-TSP solutions coincide in almost all
cases, whereas for points very close to each other, the average cost
degradation increases. In Table 2, the statistics of the number of
samples showing degradation levels, respectively, lower than 0.1, 1,
2.5, 5, and 10% are reported. As a final remark we want to point out
the fact that cases in which the cost degradation is greater than 1%
usually correspond to situations where several points are very close
one to each other: for instance, the outlier in the short-distance case
with a degradation of 25.1% corresponds to the case in which four out
of the five points to be visited, as depicted in Fig. 3, are within a ball of
radius 8.1 miles from the starting point.

VI. Conclusions

This Note has addressed the traveling-salesman problem for a
class of carrier—vehicle systems in which a slow carrier with infinite
operating range cooperates with a faster vehicle that, on the contrary,
has a limited operating range. A heuristic solution has been proposed
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Fig. 3 Comparisons between the optimal CV-TSP solution and the solution obtained by means of the proposed heuristic. Numbers represent the visiting

order.
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and an analytical bound on its conservativeness has been derived.
Extensive numerical simulations have given an insight of the
effectiveness of the proposed method in some cases of interest.
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