

Engineering Notes

Traveling-Salesman Problem for a Class of Carrier–Vehicle Systems

Emanuele Garone*

Université Libre de Bruxelles, 1050 Brussels, Belgium

Roberto Naldi†

University of Bologna, Bologna 40136, Italy

and

Alessandro Casavola‡

University of Calabria, Arcavacata di Rende 87036, Italy

DOI: 10.2514/1.50539

I. Introduction

THE complexity of many scenarios envisioned for future autonomous systems, ranging from planetary exploration to rescue missions, requires a broad range of capabilities for individual units (often including air, ground or sea mobility and sophisticated multimodal sensor suites and actuation devices), which cannot be implemented with a single platform class. Rather, it may be necessary to coordinate several specialized units to attain complex objectives in a reliable, timely, and efficient way [1]. While considerable progress has been made on cooperative control of networks of homogeneous vehicles (see, e.g., [2–5]), heterogeneous networks are still relatively poorly understood. In such a direction, recent efforts (see, e.g., [6,7]) have been undertaken for spreading the adoption of unmanned systems in real-world operational scenarios. In particular, see [8], where the employment of cooperating mobile robots, often denoted as multiple mobile robot systems, is a clear example of the capabilities achievable by combining the characteristics of heterogeneous vehicles with complementary features. To optimally exploit the different capabilities of each individual unit in obtaining the desired final behavior the team is required to be suitably coordinated via advanced planning and control algorithms.

This Note concentrates on systems of heterogeneous vehicles, arising from the combination of 1) a slow autonomous carrier vehicle (typically a ship) with a long operating endurance and 2) a faster vehicle (typically an aircraft) with a limited operative endurance. The carrier is able to transport the faster vehicle, as well as to deploy, recover, and service it. Even though this two-vehicle system is very simple it has relevant applications, and many path planning and coordination problems of interest, similar to those introduced in [9–11] for other systems may be defined for it. In the preliminary work [12] the determination of the optimal trajectories connecting up to two given points has been detailed. This Note extends previous results to the case in which n points have to be visited and the visiting sequence is not given a priori.

Received 28 April 2010; revision received 30 October 2010; accepted for publication 8 January 2011. Copyright © 2011 by Université Libre de Bruxelles. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the \$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 0731-5090/11 and \$10.00 in correspondence with the CCC.

*Assistant Professor, Department of Control and System Theory; egarone@ulb.ac.be.

†Associate Researcher, Department of Electronics, Computer Sciences and Systems; roberto.naldi@unibo.it.

‡Full Professor, Department of Electronics, Computer Sciences and Systems; casavola@deis.unical.it.

II. Carrier–Vehicle System

The system we are going to deal with is composed of two different vehicles (see Fig. 1): a *carrier*, whose variables and functions will be denoted by the subscript c , and a *vehicle*, denoted by the subscript v . In the following we will refer to the combined system as the *carrier–vehicle system*. The vehicles will be considered as material points belonging to the Euclidean space \mathbb{R}^2 and their position will be denoted, respectively, as $p_c(t) = [x_c(t) y_c(t)]^T$ and $p_v(t) = [x_v(t) y_v(t)]^T$. It is assumed that the carrier has a single integrator behavior, and thus it is able to follow any continuous path with a speed that is limited to be lower than or equal to a certain maximal velocity $V_c > 0$, i.e., $\|\dot{p}_c(t)\| := \sqrt{\dot{x}_c(t)^2 + \dot{y}_c(t)^2} \in [0, V_c]$ for all $t \geq 0$. Regarding the carried vehicle, we need to distinguish between two different situations:

1) When it is not carried, it can follow any continuous path with a speed lower than or equal to $V_v > V_c$, i.e.,

$$\|\dot{p}_v(t)\| := \sqrt{\dot{x}_v(t)^2 + \dot{y}_v(t)^2} \in [0, V_v]$$

2) When it is carried, its position coincides with that of the carrier, viz., $p_v(t) = p_c(t)$.

To model the limited operating range of the faster vehicle, it is assumed that it can leave the carrier position, i.e., $p_v \neq p_c$, for no more time than \bar{a} units of time. Moreover, anytime the vehicle comes back to the carrier, i.e., $p_v \equiv p_c$, its remaining operating endurance is instantaneously restored to \bar{a} .

III. Ordered Visit of n Points

Among the large variety of planning problems that can be formulated considering the above presented carrier–vehicle system, this Note will focus on a special scenario that was inspired, in particular, by rescue operations (see, for instance, [7]), where the faster vehicle is required to land back to the carrier after having visited each target point (e.g., to transport victims on the main vehicle as soon as possible). Within this framework the first mission planning problems we can define is the following:

Problem 1. Let an initial point p_0 , a desired terminal point p_f and a list of n points $q_{\text{list}} = [q_1, \dots, q_n]$ be given with $p_c(0) = p_v(0) = p_0$. Determine the minimum-time trajectory allowing each point to be visited by the carried vehicle in an ordered way by respecting, for each point q_i , a given sequence of takeoff, visiting the new point–landing prescriptions and ending, for both vehicles, at the terminal point p_f .

By exploiting the fact that, in the absence of constraints, the optimal trajectory between two points is a straight line covered at the maximal speeds for both the carrier and the carried vehicle, the above problem may be formulated as the following optimization problem:

$$\begin{aligned} \min_{p_{to,i}, p_{l,i}, t_{p_{l,i}, p_{to,i+1}}, t_{p_{to,i}, p_{l,i}}} & \sum_{i=0}^n t_{p_{l,i}, p_{to,i+1}} + \sum_{i=1}^n t_{p_{to,i}, p_{l,i}} \quad t_{p_{to,i}, p_{l,i}} \leq \bar{a} \\ i = 1, \dots, n \quad & \frac{1}{V_c} \|p_{l,i} - p_{to,i}\| \leq t_{p_{to,i}, p_{l,i}}, \quad i = 1, \dots, n \\ \frac{1}{V_v} (\|q_i - p_{to,i}\| + \|p_{l,i} - q_i\|) & \leq t_{p_{to,i}, p_{l,i}}, \quad i = 1, \dots, n \\ \frac{1}{V_c} \|p_{l,i} - p_{to,i+1}\| & \leq t_{p_{l,i}, p_{to,i+1}}, \quad i = 0, \dots, n \end{aligned} \quad (1)$$

where the unknowns to be determined are the collection of points $p_{to,i}$, $p_{l,i} \in \mathbb{R}^2$, $i \in \{1, \dots, n\}$, representing the takeoff and the landing points that allow the vehicle to optimally visit the i th target, and the time intervals $t_{p_{l,i}, p_{to,i+1}} \in \mathbb{R}$, $t_{p_{to,i}, p_{l,i}}$, $i \in \{1, \dots, n\}$.

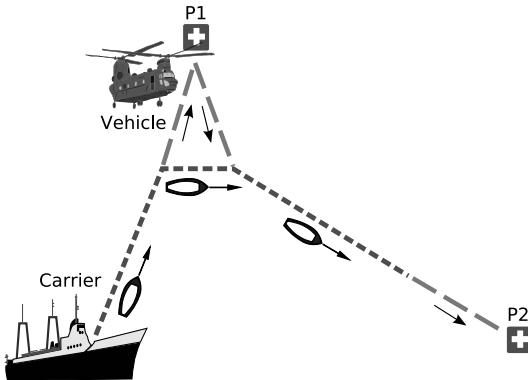
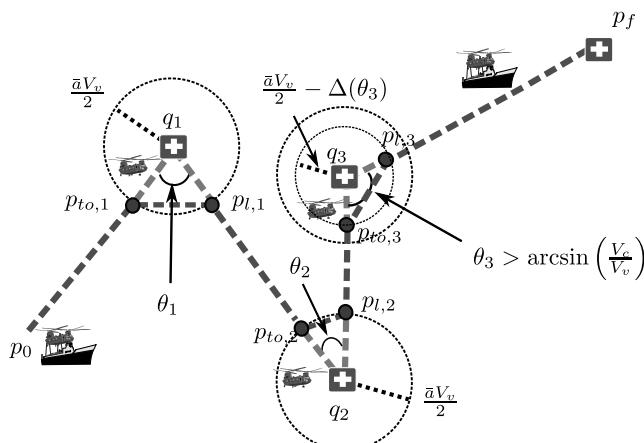


Fig. 1 Carrier-vehicle system on a rescue scenario.

Fig. 2 Geometric interpretation behind the upper bound $t_U(\ell, n, \theta_{\text{list}})$.

representing, respectively, the time that the carrier will employ to reach the $(i+1)$ th takeoff point from the i th landing point and the time that the vehicle will spend between the takeoff and the subsequent landing instants needed to visit the i th point.

For simplicity, $p_{t,0} = p_0$ and $p_{t,n+1} = p_f$ will be assumed. Note that since the objective function is linear and the constraints are convex, Eq. (1) is a convex optimization problem and then the optimum may be efficiently computed through numerical solvers.

Although an exact analytic solution is unknown (beside a few special cases like those discussed in [12]), it is possible to analytically determine upper-bounds and lower bounds to the optimal solution of Problem 1. Namely, it is possible to prove that a lower bound to the optimal cost of Problem 1 is always given by

$$t_L(\ell, n) = \max\{(\ell/V_c - nV_v\bar{a}/V_c + n\bar{a}), \ell/V_v\} \quad (2)$$

where ℓ is the length of the shortest path that a single holonomic vehicle would undertake to complete the visit of all points of interest, i.e.,

$$\ell = \sum_{i=1}^{n+1} d_{i-1,i}$$

where $d_{0,1} := \|p_0 - q_1\|$, $d_{i-1,i} := \|q_{i-1} - q_i\|$, $i \in \{2, 3, \dots, n\}$, $d_{n,n+1} := \|q_n - p_f\|$.

To derive an upper bound, it is enough to analytically find a feasible, not necessarily optimal, solution to Problem 1. To this end, denote $d_{\min} := \min_{i=1, \dots, n} d_{i-1,i}$ and let $\bar{a}' = \min\{d_{\min}/V_v, \bar{a}\}$. The following upper bound

$$t_U(\ell, n, \theta_{\text{list}}) = t_L(\ell, n) + \sum_{i=1}^n \frac{\Delta(\theta_i, \bar{a}, \bar{a}')}{V_c} \quad (3)$$

may be obtained with

$$\Delta(\theta, \bar{a}, \bar{a}') := \begin{cases} (\bar{a} - \bar{a}')V_v & \text{if } \theta \leq 2 \arcsin\left(\frac{V_c}{V_v}\right) \\ \bar{a}V_v - \bar{a}'V_c / \sin(\theta/2) & \text{else} \end{cases} \quad (4)$$

where $\theta_{\text{list}} := [\theta_1, \theta_2, \dots, \theta_n]$, $\theta_i \in [0, \pi]$, $i = 1, \dots, n-1$, denotes the list of the n (smallest) angles formed by the segments that connect two consecutive points to be visited (for a graphical intuition, also see Fig. 2). Please note that if $\bar{a}' = \bar{a}$ and $\theta_i \leq 2 \arcsin(V_c/V_v)$ for all $\theta_i \in \theta_{\text{list}}$, the proposed upper bound precisely matches the lower bound (2) and it is indeed the optimal cost.

IV. Traveling-Salesman Problem

In this Note we are interested in dealing with the following carrier-vehicle traveling-salesman problem (CV-TSP):

Problem 2 (CV-TSP). Let p_0 be the same initial position for both vehicles, viz., $p_c(0) = p_v(0) = p_0$, and assume an unordered set of n points $q_{\text{set}} = \{q_1, \dots, q_n\}$ to be visited be given. Determine the minimum-time trajectory allowing each point to be visited by the carried vehicle by respecting, for each point q_i to be visited, a given sequence of takeoff, visiting the new point-landing prescriptions and ending, for both vehicles, to the initial point p_0 .

As is well known, traveling-salesman problems are typical NP-hard (nondeterministic polynomial-time hard) optimization problems. For such a reason, in most practical cases, heuristics have to be used to solve them. In this Note, in order to deal with the particular TSP problem at hands, we propose a heuristic algorithm based on the Euclidean TSP (E-TSP). E-TSP is a particular case of the general TSP problem in which, given n points in the space, the goal is to determine the optimal sequence that minimizes the sum of the Euclidean distances between consecutive points. One of the main feature of this class of TSP problems is that, although still NP-hard, they admit polynomial-in-time optimization schemes (see [13]). This means that for any scalar $e > 0$, it is possible to find in a polynomial time a tour whose length is, at most, $(1 + 1/e)$ times larger than the optimal length. Then, in practice, for any instance of E-TSP we can obtain an *almost-optimal* solution in a reasonable time. The CV-TSP heuristic proposed here consists of the following two steps:

1) Determine the visiting order of the almost-optimal E-TSP tour for the set of given points $\{p_0\} \cup q_{\text{set}}$.

2) Use the above visiting order to solve the resulting visit of n points (Problem 1) via the convex optimization formulation (1).

The idea behind this approach is that the completion time of the CV-TSP is related to the sum of the distances between points, and thus the minimization of E-TSP usually leads to achieve a reasonably good CV-TSP solution. In particular, it is possible to prove the following:

Lemma 1. Let the initial point p_0 and the set of n points q_{set} to be visited be given. Let ℓ_{ETSP} denote the length of the $(1 + 1/e)$ -approximated optimal E-TSP tour, with $e \geq 0$, and let $\theta_{\text{list}}^{\text{ETSP}} := [\theta_1, \theta_2, \dots, \theta_n]$, $\theta_i \in [0, \pi]$ ($i = 1, \dots, n-1$) denote the list of the n (smallest) angles formed by the segments connecting two consecutive points in the order given by the approximated E-TSP solution. Then the completion time $t_{\text{CV-TSP}}^{\text{heu}}$ obtained with the proposed CV-TSP heuristic has a cost that is, at most, ε times greater than the optimal one, with ε given by

$$\varepsilon := t_U(\ell_{\text{ETSP}}, n, \theta_{\text{list}}^{\text{ETSP}}) / t_L\left(\frac{\ell_{\text{ETSP}}}{1 + 1/e}, n\right) \quad (5)$$

where $t_L(\cdot)$ and $t_U(\cdot)$ are defined in Eqs. (2) and (3).

Proof. By recalling the definition of the lower bound (2), for any given number of points n the implication $\ell_1 \leq \ell_2 \Rightarrow t_L(\ell_1, n) \leq t_L(\ell_2, n)$ holds true. Then let ℓ denote the length of a generic Hamiltonian cycle for the set of points $p_0 \cup q_{\text{set}}$, and let $\ell_{\text{ETSP}}^{\text{opt}}$ denote the length of the optimal E-TSP solution. It follows that $\ell_{\text{ETSP}}^{\text{opt}} \leq \ell$. As a consequence, $t_L(\ell_{\text{ETSP}}^{\text{opt}}, n) \leq t_L(\ell, n)$, which implies that $t_L(\ell_{\text{ETSP}}^{\text{opt}}, n)$ is a lower bound to the optimal solution of CV-TSP. Moreover, by the property of the $(1 + 1/e)$ -approximated optimal

Table 1 Comparison between the optimal solution of CV-TSP and the proposed heuristic

Distance	Number of cases	Optimal solution, %	Average degradation, %	Maximum degradation, %
Large	500	88.2	0.028	1.48
Normal	1000	73.1	0.104	7.5
Short	500	52	0.526	25.1

Table 2 Percentage of cases with degradation levels lower than 0.1, 1, 2.5, 5, and 10%

Distance	Degradation				
	<0.1%	<1%	<2.5%	<5%	<10%
Large	94.2%	99%	100%	100%	100%
Normal	92.0%	97.9%	99%	99.5%	100%
Short	82.4%	88.6%	93.2%	97%	99.4%

E-TSP solution, it follows that $\ell_{\text{ETSP}}^{\text{opt}} \geq \ell_{\text{ETSP}}/(1 + 1/e)$, where $t_L([\ell_{\text{ETSP}}/(1 + 1/e)], n)$ is a lower bound to the optimal solution of CV-TSP as well. The proof ends by noting that $t_U(\ell_{\text{ETSP}}, n, \theta_{\text{list}}^{\text{ETSP}})$ is an upper bound to the proposed heuristic solution. Please note that for the properties of the upper bound to Problem 1, in the particular case that the points to be visited are sufficiently far from one another (i.e., $d_{\min}/V_v > \bar{a}$) and the angles θ_i formed by the segments connecting the points in the order given by the E-TSP algorithm satisfy $\theta_i \leq 2 \arcsin(V_c/V_v)$, then

$$\varepsilon = t_L(\ell_{\text{ETSP}}, n) / t_L\left(\frac{\ell_{\text{ETSP}}}{1 + 1/e}, n\right)$$

results and the optimal sequence of points for E-TSP is also optimal for CV-TSP.

V. Numerical Results

Numerical simulations have been undertaken to compare the optimal solution of CV-TSP with the one obtained by the proposed heuristic in a realistic scenario in which a combined unmanned

surface vehicle and unmanned aerial vehicle system has to monitor some randomly generated points of interest in a certain portion of sea. The unmanned surface vehicle, which represents the carrier, is assumed to have a maximum velocity $V_c = 10$ mph, and the aircraft has a maximum flight speed $V_v = 50$ mph and a flight endurance $\bar{a} = 0.4$ h.

The targets to be visited are limited to five randomly generated points that still make the computation of the exact optimal solution in a reasonable time possible. As highlighted in Lemma 1, the distances among targets play an important role in the performance of the proposed CV-TSP heuristic. In this respect, the simulations consider three different scenarios that differ by the size of the area where the targets are generated. The first one, large distance, consists of an area of 200×200 miles, and the second and the third ones, normal distance and short distance, measure 80×40 miles and 40×40 miles, respectively. The results are reported in Table 1, where the number of samples considered and the optimal solution as the percentage of cases in which the sequences generated by exactly solving the CV-TSP problem and by using the E-TSP heuristic coincide. Finally, the average and the maximal degradations in the cost of E-TSP with respect to the optimal cost of CV-TSP are shown. Note that the performance of the proposed heuristic is, at least in this case, a very tight approximation of the optimal solution. It is possible also to note that, as expected, for points generated in a larger area the heuristic and the optimal CV-TSP solutions coincide in almost all cases, whereas for points very close to each other, the average cost degradation increases. In Table 2, the statistics of the number of samples showing degradation levels, respectively, lower than 0.1, 1, 2.5, 5, and 10% are reported. As a final remark we want to point out the fact that cases in which the cost degradation is greater than 1% usually correspond to situations where several points are very close one to each other: for instance, the outlier in the short-distance case with a degradation of 25.1% corresponds to the case in which four out of the five points to be visited, as depicted in Fig. 3, are within a ball of radius 8.1 miles from the starting point.

VI. Conclusions

This Note has addressed the traveling-salesman problem for a class of carrier–vehicle systems in which a slow carrier with infinite operating range cooperates with a faster vehicle that, on the contrary, has a limited operating range. A heuristic solution has been proposed

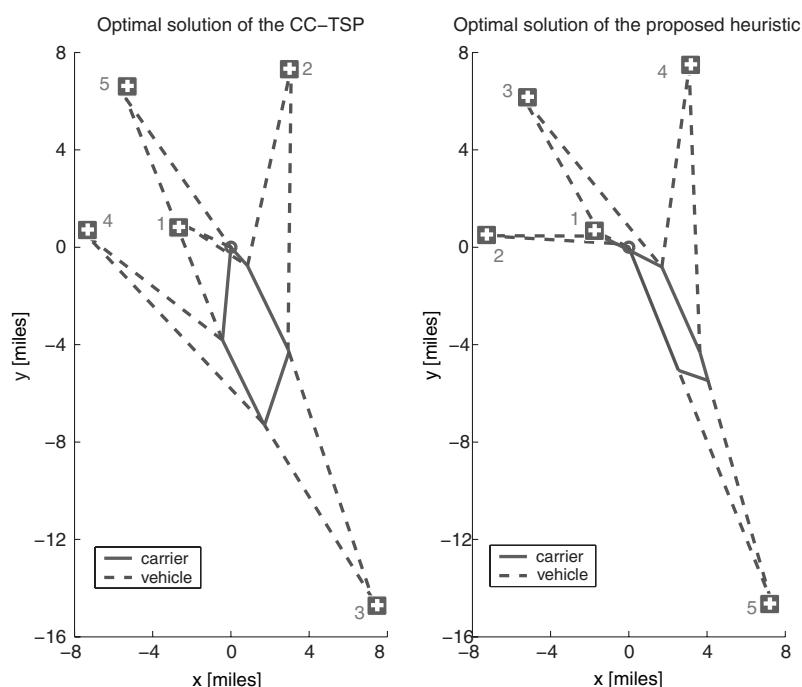


Fig. 3 Comparisons between the optimal CV-TSP solution and the solution obtained by means of the proposed heuristic. Numbers represent the visiting order.

and an analytical bound on its conservativeness has been derived. Extensive numerical simulations have given an insight of the effectiveness of the proposed method in some cases of interest.

Acknowledgments

This Note was supported by the Belgian Network DYSCO (Dynamical Systems, Control and Optimization) funded by the Interuniversity Attraction Poles Program, initiated by the Belgian State, Science Policy Office. This Note was also supported by the Young Researcher Grant for the research project "Path Planning for Heterogeneous Cooperating Vehicles," Decreto Rettoriale no. 1054,27.4.2009, University of Calabria, Italy, and by the collaborative project AIRobots (Innovative Aerial Service Robots for Remote inspections by contact, ICT 248669) supported by the European Community under the 7th Framework Programme. The scientific responsibility rests with its authors. The authors want to thank E. Frazzoli of Massachusetts Institute of Technology for the many useful discussions and suggestions.

References

- [1] Murray, R. M., "Recent Research in Cooperative Control of Multi-Vehicle Systems," *Journal of Dynamic Systems, Measurement, and Control*, Vol. 129, No. 5, 2007, pp. 571–583.
doi:10.1115/1.2766721
- [2] Chandler, P. R., Pachter, M., Swaroop, D., Fowler, J. M., Howlett, J. K., Rasmussen, S., Schumacher, C., and Nygard, K., "Complexity in UAV Cooperative Control," *American Control Conference*, Anchorage, AK, 2002, pp. 1831–1836.
- [3] Beard, R. W., McLain, T. W., Goodrich, M. A., and Anderson, E. P., "Coordinated Target Assignment and Intercept for Unmanned Air Vehicles," *IEEE Transactions on Robotics and Automation*, Vol. 18, No. 6, 2002, pp. 911–922.
- [4] Darbha, S., "Combinatorial Motion Planning for a Collection of Reeds-Shepp Vehicles," U.S. Air Force Research Lab., Eglin AFB, FL, 2005.
- [5] Gil, A. E., Passino, K. M., and Sparks, A., "Cooperative Scheduling of Tasks for Networked Uninhabited Autonomous Vehicles," *IEEE Conference on Decision and Control*, IEEE Press, Piscataway, NJ, Dec. 2003, pp. 522–527.
- [6] Parker, L. E., "Multiple Mobile Robot Systems," *Springer Handbook of Robotics*, edited by Siciliano, B. and Khatib, O., Springer, New York, 2008, pp. 921–936.
- [7] Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., and Erkmen, A. M., "Search and Rescue Robots," *Springer Handbook of Robotics*, edited by Siciliano, B. and Khatib, O., Springer, New York, 2008, pp. 1151–1171.
- [8] Cao, Y. U., Fukunaga, A. S., and Kahng, A., "Cooperative Mobile Robotics: Antecedents and Directions," *Autonomous Robots*, Springer, New York, 1997, pp. 226–234.
- [9] LaValle, S. M., *Planning Algorithms*, Cambridge Univ. Press, Cambridge, England, U.K., 2006.
- [10] Frazzoli, E., and Bullo, F., "Decentralized Algorithms for Vehicle Routing in a Stochastic Time-Varying Environment," *IEEE Conference on Decision and Control*, IEEE Press, Piscataway, NJ, Dec. 2004, pp. 3357–3363.
- [11] Bertsimas, D. J., and van Ryzin, G. J., "A Stochastic and Dynamic Vehicle Routing Problem in the Euclidean Plane," *Operations Research*, Vol. 39, 1991, pp. 601–615.
doi:10.1287/opre.39.4.601
- [12] Garone, E., Naldi, R., Casavola, A., and Frazzoli, E., "Cooperative Path Planning for a Class of Carrier–Vehicle systems," *47th IEEE Conference on Decision and Control*, IEEE Press, Piscataway, NJ, 10–11 Dec. 2008, pp. 2456–2462.
- [13] Arora, S., "Polynomial-Time Approximation Schemes for Euclidean TSP and Other Geometric Problems," *Journal of the ACM*, Vol. 45, No. 5, 1998, pp. 753–782.
doi:10.1145/290179.290180